Page 3 of 5

Re: of oil pumps and aluminum

Posted: Sun Apr 11, 2010 6:03 pm
by cape cod dave
Has anyone had any experience with the DDS oil pumps with the long shafts supported buy the outer aluminum cover??

Re: of oil pumps and aluminum

Posted: Tue Apr 20, 2010 12:56 pm
by brettm69
who is DDS?

Brett

Re: of oil pumps and aluminum

Posted: Tue Apr 20, 2010 1:53 pm
by Tom Simon
I just took an engine apart with an oil pump like that, tall gears, the cover has a receptacle for the drive gear, and a pressed in pin that supports the driven gear. Look hear for thread and pics on UAC http://ultimateaircooled.com/simplemach ... pic=7213.0

We weren't sure who's it was??? DDS you say?

Re: of oil pumps and aluminum

Posted: Wed Apr 28, 2010 5:25 pm
by perrib
DDS is Deano's Dynosaurs. There were also some old Claudes buggies pumps made that way. I never asked Dean why they were made that way.

Re: of oil pumps and aluminum

Posted: Wed Apr 28, 2010 7:05 pm
by Tom Notch
Stiffer case and better supported Gears gives less gear deflection which will keep oil pressure up.





Especially when digesting big bits of once expensive parts.
:lol:

Re: of oil pumps and aluminum

Posted: Mon May 03, 2010 1:26 am
by jan72
Tom Simon wrote:I just took an engine apart with an oil pump like that, tall gears, the cover has a receptacle for the drive gear, and a pressed in pin that supports the driven gear. Look hear for thread and pics on UAC http://ultimateaircooled.com/simplemach ... pic=7213.0

We weren't sure who's it was??? DDS you say?
That requires login... Could attach post one or two pictures here?

Re: of oil pumps and aluminum

Posted: Sat Aug 28, 2010 2:29 pm
by earthquake
I have a question... Could you just roll a o-ring on to the pump so that it goes in the corner of the pump mounting flange and seals against the case? [does that make sense]
How about a thin copper gasket? [.010 thick] between the pump and the case.

Casey

Re: of oil pumps and aluminum

Posted: Sat Aug 28, 2010 6:55 pm
by Piledriver
earthquake wrote:I have a question... Could you just roll a o-ring on to the pump so that it goes in the corner of the pump mounting flange and seals against the case? [does that make sense]
How about a thin copper gasket? [.010 thick] between the pump and the case.

Casey
Those ideas would prevent leaks to the outside world ...This is easily eliminated simply by using a little Permatex red anaerobic gasket replacement (same stuff Jake recommends for the case halves, works awesome) even apparently works on Melling (iron) pumps at least for awhile.

The worst issue with a loose pump body is the oil leak and air suckage INSIDE the case. The oring AFAIK the only effective "fix" for a loose pump, and it's far from ideal.
The anaerobic sealer obviously is not a great plan on the pump OD in the case., (hey---it MIGHT work, you go first :lol: )

Jake's making billet pumps, w/proper specs and IIRC an oversize, but they're priced like a billet pump with proper specs, and not available retail yet... He's his own best customer. (his turnkey motors).

Re: of oil pumps and aluminum

Posted: Mon Nov 01, 2010 7:44 am
by Arnolds64
Just bought the Steel Empi full flow cover after using an Aluminum cover. I am in the process of tearing down the motor and will see if it had ate into the cover. I do have straight cut gears so it will be interesting to see if there us any wear after only about 3000 miles. I checked the cover against the Glass on my bug an it seems to be flat. I cannot see how you can screw that piece up to much except for maybe outlet being not aligned. Looks very solid. I may do the 400 grit on glass still.

Re: of oil pumps and aluminum

Posted: Thu Nov 10, 2011 4:25 am
by vdubsinjensen
I've used a Bunch of the Empi Steel Full flow covers. They're fine. It looks as if EMPI just sent one of Bergs' covers over to China and had it duplicated. :shock:

Re: of oil pumps and aluminum

Posted: Sun Jan 29, 2012 2:11 am
by andy198712
Hard anodising the pump it's self helps reduce side clearance and bring down gear slop, making it more efficient, aka part of blue printing it

Re: of oil pumps and aluminum

Posted: Sun Jan 29, 2012 2:17 am
by Piledriver
Hard anodizing is great stuff, but as you are mostly converting the outer layers of aluminum to nice, hard aluminum oxide, it typically doesn't make the part dimensionally too much larger...

Typically it's ~50 microns thick (.002"), and ~half of that is "in".

It would theoretically make an oil pump body ~.002" larger in OD, maybe .0025. Iffy.
From what I have seen, there's good reason Berg also orings their blueprinted/anodized pumps.

Re: of oil pumps and aluminum

Posted: Sun Jan 29, 2012 2:46 am
by andy198712
i think thats part of it though, that little bit helps out with slop in the gears if is some, covered in bill fishers book (thats where i got it from)

Re: of oil pumps and aluminum

Posted: Wed Sep 12, 2012 3:36 pm
by Alpha_Maverick
I was planning on using a loop of 2 thou shim stock, opened up in the appropriate region for inlet, around the pump, using bolts to hold the pump instead of studs, and installing the pump as I'm putting the halves together. Is there anything wrong with that? Should I use any sealer between the case/shim/pump?

Re: of oil pumps and aluminum

Posted: Sat May 25, 2013 1:56 pm
by tencentlife
I've been o-ringing the nose of all my oil pumps for years, a single ring between the ports and the inner end of the body. That's the most important one, for preventing air being sucked in from inside the crankcase. Since my wbx's all use hydraulic lifters non-aerated oil is especially important.

So since it's one of those topics that's like the weather, that is everyone talks about it, but no one does anything about it, here's a little treatise for you all on how I o-ring oil pumps.

The easiest way to do that most important one is on a lathe. But you quickly find how you can't mount the awkwardly-shaped pump body in a normal 3-jaw chuck so you can machine the nose. You can center it up in a 4-jaw for a one-off, sure, but I'm doing several at a time, often, and that gets pretty old pretty quick.

So, obviously, make a fixture. Take a junk pump body, punch out the steel idler gear pin, and saw or turn off the protruding bosses on the back of the round part of the body. In a 4-jaw chuck you can then turn off the back of the cut off body so it's dead flat. Now you can chuck the round part of that body quickly in a 3-jaw, and using either two M8 nut-bolt pairs at opposite corners, or a longer M10 bolt and nut thru the driven gear hole, mount the workpiece pump face-to-face with your fixture pump, and zero it in with a dial indicator (within .002" radially is good enough for the o-ring). That's pretty fast and easy to do, even over and over. The groove is then easily cut with a parting tool.

The o-ring sizes that work are a #37 or a #145. Buna-N is what I use, 70 durometer. The only material I would consider superior is fluorosilicone but it's much more expensive and the advantages it offers are marginal for the cost. Buna-N works well with about .008-.010" projection above the groove.

The #37 o-ring is nominally 1/16" (.0625") in section, so for ~.010" projection it needs a groove ~.052" deep and .070-.080" wide. A common 5/64" parting tool is .078" wide so that can be used in a single pass.

The #145 is nominally 3/32 (.094") in section so for ~.010" projection it needs a groove ~.084" deep and ~.105-110" wide. That can be done with that same 5/64" tool, moving it aside the extra .025" or so, and doing a nice sweep across the bottom of the groove for the last couple thou of depth.

Depending on the pump, the distance from the larger suction-side port to the nose of the body varies, so you may favor the thinner #37 o-ring if it is a large-suction-hole pump. The ones I use have the larger hole and I have been using the #145 o-ring in spite of that, but will be switching to the #37 for reasons I will explain below.

The amount of o-ring projection can be as little as ~.005-.006" and do the trick. How much you want to have depends a bit on the material selection, and whether you would like to be able to install the pump in an assembled case. No matter what, the outcome is always more certain if you install the pump when mating the case halves (using bolts rather than studs), but I have pulled and reinstalled my pumps with the #145 o-ring projecting ~.008" with no damage to the rubber, and that is without taking the precaution of chamfering the port holes in the case. Grooving deeper for a smaller projection of course will improve the odds, as will chamfering the ports. O-rings should always be oiled as well as the surfaces they will ride against, which must be smooth and clean. Don't gob everything up with sealant, that obviates the whole reason you're fitting o-rings, which is to have a flexible seal that responds to dimensional changes under expansion and contraction in a way few sealants can.

Now, as long as I have had the pumps centered up on the lathe, it takes only a minute more to cut a second groove up under the flange, as a belt-and-suspenders approach. You still want a gasket/and/or sealant under the flange, and your bolt threads need to be treated with a thread sealant, so oil doesn't seep out the threads from inside the crankcase (thats the oil the plastic sealing inserts in the OEM-spec pump cover nuts are there to contain, but better to stop that seepage at the source by sealing the threads). Don't cut the groove butt up against the flange, move it away a bit more than the thickness of the gasket so the gasket will center on the pump body like it's supposed to and not interfere with the o-ring.

This pump has both body grooves and they accept the #145 o-ring:
Image

OK, that's how I used to do the pumps. Nowadays I'm going yet a step further and placing an o-ring in the pump face to give a flexible seal under the cover as well. That's 3 o-rings per pump! Now I know someone much smarter than I am is going to say this is too much trouble and not needed, and y'know it probably is too much trouble for a hobbyist, but I'll tell you what: when you are building engines constantly, and once you work out your processes, the time spent on machining is made up two-fold in time saved during assembly, and I have the assurance of a leak-free pump for the life of the engine. My new process lets me do all the operations on the mill.

Below are pics of the fixture I use on my mill's rotary table. The first pic shows how I faced off the backside of a pump body, leaving a boss that fits very snugly into the center hole of the rotary table. I then milled out slots on either side that allow a 3/8" x 1" flat steel bar to slide thru.
Image

The bar has holes on either end so it can be bolted down to the t-slots in the rotary table top, holding the fixture down with the boss keeping it on-center. The bar has an M10 threaded hole that ends up aligned with the driven gear shaft hole in the workpiece pump. A little relief had to be milled out of the bar to make room for the driven gear shaft boss on the back of the workpiece pump.

Most critically, the face of the fixture was milled out on the rotary table until the round part of a new pump body would nestle snugly into the round depression. This way, a pump rests perfectly flat and on-center every time it is dropped onto this fixture.
Image

It gets bolted down to the fixture thru the driven gear shaft hole, with a wide flat washer and nylon washer to hold it down snug without marring the inside of the workpiece.
Image

On the pump face, a 1/8" endmill cuts a nice square-bottom groove that supersedes the circular oil return groove, allowing oil that does reach that groove to still be drawn back to the suction side. That groove accepts a #145 o-ring.
Image

Image

Then I cut my two grooves around the pump body with a slitting saw. My fixture allows pump bodies to be swapped in and out very fast and they settle right on center, so I can change out my workpieces faster than I can change the mill's tooling and positions.

I tried these body grooves with a nominally 1/8" slitting saw, but the resulting groove was about .130" wide and left very little meat between the large suction port and the groove walls. But leaving more meat there meant the o-ring was almost being squeezed out to the inside of the crankcase. That's why I'm going back to a #37 o-ring, so I can use my 1/16" saw and not have the grooves so close to the port while being sure the o-ring is fully contained and compressed within the pump bore.
Image
Image
The saw blade needs to be at least 2.5" diameter to be able to reach in under the pump flange ears.
Image

And finally, I face off the covers with a flycutter. An .005" depth of cut takes out all wear and corrosion and leaves a nice dead-flat surface on one pass.
Image

Image

When I install the cover, I use a very light coat of Reinzosil on the pump face but strictly outside the face o-ring groove. That's just extra insurance against any oil that may seep up the bolt threads finding its way out. Same goes for the gasket under the pump flange. All the pressurised oil is contained by the o-ring seals and the nose o-ring of course also prevents air being drawn in on the suction side.

As for setting the all-important gear end-clearance, most pump bodies aren't dead flat across the face, the flange ears almost always turn up, so while each body is in the mill fixture I can graze them with an endmill to bring the face dead flat. In doing this I may calculate the cut depth so I end up with my desired .003" gear endplay. Or, if the endplay out of the box is too tight, it's very easy to chuck each gear in the lathe and take off exactly enough to set the endplay. It just depends on the pumps, they vary in where the errors are as all new parts do, which is why we blueprint things.